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Let D(n)(D(n, k)) denote the maximum possible d such that there exists a 

d-regular hypergraph (d-regular k-uniform hypergraph, respectively) on n vertices 
containing no proper regular spanning subhypergraph. The problem of estimating 
D(n) arises in Game Theory and Huckemann and Jurkat were the first to prove 

that it is finite. Here we give two new simple proofs that D(n), D(n, k) are finite, 
and determine D(n, 2) precisely for all n > 2. We also apply this fact to Invariant 
Theory by showing how it enables one to construct an explicit finite set of 

generators for the invariants of decomposable forms. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

Suppose n > 1 and put N = ( 1,2, 3,..., n}. A (multi)-hypergraph H on N is 
a multiset of elements of the power set P(N), i.e., a collection of subsets of 
N, where the same subset can appear several times. The degree of a point 
iENis dH(i)=CiEScN fH( S), where fH( S) is the number of occurrences of 
S in H. H is d-regular if d,,(i) = d for all ie N. We call H a k-hypergraph if 
fH(S) > 0 =S ISI = k. A subhypergraph G of H is a submultiset of H. H is 
indecomposable if it contains no proper nonempty regular subhypergraph. 
In this note we consider the maximum possible degree of regularity of 
regular indecomposable hypergraphs. More precisely, define for IZ > 1, 
D(n) = Max{d: H is a d-regular indecomposable hypergraph on N}, and 
for n 2 k 2 1 D(n, k) = Max{d: H is a d-regular mdecomposable 
k-hypergraph on N}, where it is understood that D(n) = co is a possibility. 
Huckemann and Jurkat (cf. [S]) are the first to prove that D(n) (and 
hence D(n, k)) is finite for all n. The problem of estimating D(n) is con- 
sidered by many people, since it has applications in Game Theory. 
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Huckemann, Jurkat and Shapley prove that D(n) < (n + l)@+ l)/* for all 
n> 1. (cf. [S]). 

Our motivation to consider this problem comes from Invariant Theory. 
One of the fundamental theorems of Invariant Theory is Hilbert’s 
Finiteness Theorem, that asserts that there exists a finite generating set for 
the invariants of forms of degree n in k variables. Hilbert’s proof supplies 
an explicit finite set of generators only for the case k = 2, i.e., the invariants 
of binary forms. For the general case, Popov [7], recently gives an explicit 
set of generators. His construction, however, involves several deep results 
from algebraic geometry. Here we obtain an elementary combinatorial con- 
struction for the case of decomposable forms, by showing how it follows 
from upper bounds for the D(n, k) -s. For more details, see [3]. 

As it frequently happens we learn (from P. Frankl) about the known 
results concerning D(n) only after we have two new simple proofs that 
D(n) is finite for all n. Our first proof is based on Gordon’s lemma, and is 
very simple. It only shows, however, that D(n) is finite and does not supply 
any bound. Our second proof is based on a geometric result, known in the 
Russian literature as Stienitz’ Lemma. This proof supplies an explicit 
bound and, in fact, also enables us to prove an effective version of Gor- 
don’s lemma. The original proof of Huckemann, Jurkat and Shapley also 
supplies an explicit bound and is based on Hadamard bound for deter- 
minants. All these proofs together seem to reveal a ,close and interesting 
relationship between several geometric and combinatorial results. 

Every upper bound for D(n) is, of course, also an upper bound for 
D(n, k). It is worthwhile, however, to find better upper bounds for the 
D(n, k) - s, since these supply more efficient sets of generators for the 
invariants of decomposable forms in k variables. Our second proof (as well 
as the methods described in [S]) supply upper bounds of the form 2c~10gn 
for D(n) and of the form 2’k’” for D(n, k). Obviously D(n, 1) = 1 and we 
can apply known results from Graph Theory to show that 

D(n, 2) < 
n-l for even n, 
2 for odd n. 

This is sharp, provided loops are allowed. 
As mentioned above, the finiteness of D(n) has applications in Game 

Theory and in Invariant Theory. Another application is found very recently 
by the authors of [ 11, who used this fact to solve a conjecture of ErdGs 
and V.T. Sbs about simultaneously balancible sets. 

2. GORDON'S LEMMA AND THE FINITENESS OF o(n) 

The following lemma is due to Gordon. For its simple proof, see, 
e.g., C61. 



REGULARHYPERGRAPHS 93 

LEMMA 2.1 (Gordon). Let 

AX=0 (2.1) 

be a homogeneous system of linear-equations in the variables xi, where A is a 
matrix of integer coefficients. Let M denote the set of all solutions of (2.1) 
over the non-negative integers. Then there exists a finite set of solutions 
b 1 ,..., b, E M such that every solution s E M is a linear combination with non- 
negative integer coefficients of bI ,,.., b,. 

Note that the lemma gives no upper bound for p (in terms of A) and 
only guarantees that it is finite. In the next section we give such upper 
bound. 

We now show that Lemma 2.1 implies that D(n) is finite. Put 
N= { 1, 2,..., n>. For each ScN let xs be a variable and consider the 
following system of equations in the variables {xs: S c N} u {d}: 

c xs-d=O i= l,..., n. 
it S 

(2.2) 

Clearly the set of all solutions of (2.2) over the non-negative integers is 
precisely the set of all regular hypergraphs on N. Hence, by Lemma 2.1, 
there exists a finite generating set of solutions. One can easily check that 
every indecomposable regular hypergraph must belong to this set. Thus, 
there are only finitely many indecomposable regular hypergraphs on N, 
and D(n) is finite, as needed. 

It is worth noting that the finiteness of D(n) follows similarly from the 
known fact that the set of all hypergraphs on N is a well quasi order (i.e., 
in any infinite sequence { Gi}im_ 1 of hypergraphs on N, G, is a sub- 
hypergraph of Gj for some i < j). This also implies that the set of all 
indecomposable regular hypergraphs on N is finite, and thus so is D(n). 

3. STEINITZ' LEMMA AND UPPER BOUNDS FOR D(n), D(n,k) 

Steinitz’ lemma asserts that every sequence of m vectors of norm < 1 in 
R” whose sum is the zero vector, can be rearranged such that all initial 
sums will have norm d c(n), where c(n) depends only on the dimension and 
not on the number of vectors. The estimate for c(n) has been improved 
several times. The best-known upper bound is due to Sevast’yanov [8], 
(see also Barany [2]), and it applies to any normed space. His result is the 
following: 

LEMMA 3.1 (Sevast’yanov). Let X be any normed n-dimensional space. 
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Suppose vl, vz,..., D,EX, ljvill < 1 and CyCI vi=O. Then there is u per- 
mutation n on 1, 2,..., m such that for all 1 < j < m. 

I/: II ,cl un(i) 0. 

Lemma 3.1 supplies an upper bound for D(n) as follows. 

PROPOSITION 3.2. For every n b 1, D(n) d 4. (2n + 1)“. 

Proof: Let H be a d-regular hypergraph on N, where N= { l,..., n} and 
d> $(2n + 1)“. We must show that H contains a proper regular sub- 
hypergraph. For S c N, let f(S) = fH( S) d enote the number of occurrences 
of S in H. Let A4 be the sequence of d+ Csc Hf(S) vectors of length n, 
consisting of f(S) copies of the characteristic vector of S (for all S c N), 
and d copies of the vector (- 1, - l,..., - 1). Clearly A4 has at least 2d vec- 
tors whose sum is the zero vector and each has sup-norm 1. By Lemma 3.1 
one can rearrange these vectors such that all initial sums have sup- 
norm dn. Since there are > (2n + 1)” such sums and the number of lattice 
points having sup-norm <n is (2n + 1)” some pair of initial sums coincide. 
Their difference is a nontrivial partial sum that vanishes. Since 
( - 1, - l,..., - 1) is the only vector in M having negative coordinates it 
must occur, say d’ < d times in this partial sum. The other vectors of this 
sum correspond to the set of edges of a proper d-regular subhypergraph of 
H. This completes the proof. 1 

Similar to Proposition 3.2 is the following. 

PROPOSITION 3.3. For every n > k 2 1 

D(n, k) < 2”. 
(,,+I+ ‘> 

N 2”(1+(k+I)Hz(ll(k+1))) 
’ 

(3.1) 

where H, is the binary entropy function, i.e., H*(x) = -x log, x - (1 -x) 
log,( 1 - x). 

Proof Let H be a d-regular k-hypergraph on N, where N= { 1,2,..., n} 
and d>2”.( “k+; + ‘). Let M be the sequence of vectors of length n con- 
sisting of fH(S) copies of the characteristic vector of S (for all SC N), and 
of d. n copies of the vector ( - l/n, - l/n,..., - l/n). The sum of vectors of 
A4 is 0 and each has /,-norm < k. Hence, by Lemma 3.1, these vectors can 
be rearranged such that all initial sums have II-norm < n. k. Note that each 
initial sum is a lattice point + r( l/n, l/n,..., l/n) for some 0 < r <n. One can 
easily check that the number of these is <n. 2n(nk+l+ I), and since the 
number of vectors in M is at least d * n + d. n/k > n .2”( nk +z + ’ ), there is, as 
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in the proof of Proposition 3.2, a nontrivial partial sum that vanishes. This 
implies that H contains a proper regular sub-hypergraph and completes the 
proof. It is worth noting that by using the methods described in [S] we can 
improve (3.1) to D(n, k) < (;) . k”“. We conjecture that in fact 
D(n, k) <n’(“), where c(k) depends only on k. 1 

The method used in the proofs of the last two propositions enables us to 
obtain an effective version of Gordon’s lemma (Lemma 2.1), namely to give 
an explicit finite set of generators for the set of non-negative integer 
solutions of a homogeneous systems of linear equation. This is stated in the 
following Proposition whose proof, which is analogous to those of 
Propositions 3.2 and 3.3, is omitted. 

PROPOSITION 3.4. Let 

AX=0 (3.2) 

be a homogeneous system of r linear equations in the t variables x1, x2,..., xI, 
where A=(av)l.i.r,,.j.t is a matrix of integer coefficients. 

Let M denote the set of all solutions of (3.2) over the non-negative 
integers. Put a=max(laJ: l<i<r, l<j,<t) and define B= 
{(Xl,..., x,1 E iv: Cf= , xi < (2at + l)‘}. Then every solution s E M is a linear 
combination with non-negative integer coefficients of the solutions in B. 

Note that we use here the sup-norm. Similar results with other norms 
can be formulated. 

We conclude this section with the case k = 2 (multigraphs). 

PROPOSITION 3.5. 

Nn, 2) < 
n-l for even n 
2 for odd n. 

Proof Let H be a d-regular multigraph on n vertices. H has, possibly, 
loops. By a theorem of TaBkinov [9], if H has at most d- 1 bridges it con- 
tains a 2-regular factor ( = 2 regular spanning subgraph). Since the number 
of bridges is, clearly, at most n - 1, we conclude that if d 2 n H is not 
indecomposable. It remains to show that for odd n, every d regular mul- 
tigraph on n vertices is not indecomposable for d > 2. However, since d 
must be even, such a graph always contains a 2-factor, by a theorem of 
Petersen (cf. [4]). This completes the proof. Note that if loops are allowed 
this result is best possible. Indeed, for even n, the graph obtained from a 
star with n - 1 edges by adding (n - 2)/2 loops at each endvertex is (n - l)- 
regular and indecomposable. For odd n, the cycle of length n is 2-regular 
and indecomposable. m 

58h43: 1-7 
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4. INVARIANT THEORY OF DECOMPOSABLE FORMS 

In this section we explain very briefly the connection between D(n, k) 
and Invariant Theory of decomposable forms. For more details see [3]. 

Let f(x) be a decomposable homogeneous form of degree n in the k 
variables x1, q,..., xk over a field of characteristic zero, i.e., 

where 

L,(x) = ri,x, + rRxZ + . . . + rikxk 

i = 1, 2,..., n. Let N= { 1, 2 ,..., n} and let lR= (rii}, ieN, j= 1, 2 ,..., k. For 
Z=(i,,i,,...,ik)~Nk such that i,+i,+ ... +ik=n let a,=a,(R) be the 
coefficient of xy . xS. . . xi in f(x), i.e., 

f(x)= c a xilxi2.. . xC 
I 1 2 k’ 

IGNk 
rl+iz+ ... +ik=n 

A linear change of variables C = (co) is transformation from the variables 
x = (Xl) x2,..., xk) to the variables .f = (X1, X2,..., %k) given by 

such that det C # 0. Under a linear change of variables L,(x) is transformed 
to L,(x)=r,, ‘Xl +J,x,+ ‘.. + ?jkXk and f(x) is transformed to 

f(x)=L,(x) L,(Z). . . E,(i)=C a,x;xq-.-x2. 

A non-constant polynomial P(al) in the variables {a,= a,(R), ZE Nk} is 
an invariant if for all linear changes of variables @ 

P(al) = (det C)” Z’(a,) 

for some positive integer g. 
For i,, i2,..., ik distinct numbers from N the bracket (of size k) 

B = [il, i2,..., ik] is defined by 

A bracket monomial M is a product of brackets, i.e., M = B, B, . . . B, where 
Bi is a bracket, i = 1, 2 ,..., p. A bracket monomial M is regular of degree d if 
each number from N occurs in exactly d brackets of M. 
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Since a regular bracket monomial corresponds to a regular k-uniform 
hypergraph on the vertex set N whose edges correspond to the brackets of 
M, we have the following 

PROPOSITION 4.1. Every regular bracket monomial involving brackets of 

size k can be expressed as a product of regular bracket monomials each hav- 
ing degree at most D(n, k). 

By Proposition 3.3 this supplies an explicit finite set of generators for the 
bracket monomials. In [3] it is shown that such a set provides an explicit 
set of generators for the invariants of decomposable forms of degree n in k 
variables. 
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